
N232-094, Blockchain-based, Highly Secure, Decentralized, and Immutable (DSI)

Network System Protocol for Multifunction Advanced Data Link (MADL)

Responses to questions posted to DSIP Topic Q&A

1. All limitations depend on the communication environment. Your Blockchain like solution should be an

open-source software-based platform and independent of the hardware platform. Your Blockchain like

solution should work on generic platforms, like X86 and ARM. In terms of running environment, it can

work on native OS environments Linux, Windows, and Mac, or docker containers supported by the

underlying OS. Blockchain-based communication adopted by Blockchain like solution should work at the

application protocol level atop of TCP/IP (level 3). Thus, your Blockchain like solution solution should not

be limited by level 2 (data link) and level 1 (physical) communication. Since MADL works at Ku-band fast

switching narrow directional communications, your Blockchain like solution should work without major

modification

Hardware or Software for your review and consideration:

• Size, Weight and Power and Cost (SWaP-C) – 1) Neuromorphic processing – Intel Loihli

hardware, LAVA software; 2) Raspberry Pi 4 Model B boards as edge devices with ZPiE open-

source library. ZPiE: Zero-knowledge Proofs in Embedded systems, GitHub,

https://github.com/xevisalle/zpie; and 3) NVIDIA Jetson modules

• Interoperable with NSA-approved Commercial Solutions for Classified (CSfC) solutions that use

two layers of commercial encryption.

• The Inter-Blockchain Communication Protocol (IBC) is a protocol to handle authentication and

transport of data between two blockchains. IBC requires a minimal set of functions, specified in

the Interchain Standards (ICS). https://github.com/cosmos/ibc

• Secure Spectrum Sensing based on Blockchain (SSSB) algorithm to evaluate the reliability of

nodes in real-time and improve energy efficiency and sensing performance of cognitive wireless

of MADL.

• Ad Hoc On-Demand Distance Vector (AODV) routing protocol

C. Ran, S. Yan, L. Huang, and L. Zhang, “An improved AODV routing security algorithm based on

blockchain technology in ad hoc network,” EURASIP journal on wireless communications and

networking, vol. 2021, no. 1, pp. 1–16, 2021.

2. Your Blockchain like solution should follows the principles of permissionless network management.

Any regulatory and compliance rules by permissionless management should also be applied.

Permissionless blockchain models are founded on the idea that the nodes in the network do not trust

each other and so every node in the network maintains its own identical copy of the ledger and is

responsible for checking the validity of transactions on its own.

For your consideration and possible use the following National Institute of Standards and Technology

(NIST) information is provided in answering the question:

For general encryption, NIST has selected the CRYSTALS-Kyber algorithm. Among its advantages are

comparatively small encryption keys that two parties can exchange easily, as well as its speed of

operation.

For digital signatures, often used to verify identities during a digital transaction or to sign a document

remotely, NIST has selected the three algorithms CRYSTALS-Dilithium, FALCON and SPHINCS+ (read as

“Sphincs plus”). Reviewers noted the high efficiency of the first two, and NIST recommends CRYSTALS-

Dilithium as the primary algorithm, with FALCON for applications that need smaller signatures than

Dilithium can provide. The third, SPHINCS+, is somewhat larger and slower than the other two, but it is

valuable as a backup for one chief reason: It is based on a different math approach than all three of

NIST’s other selections.

Three of the selected algorithms are based on a family of math problems called structured lattices, while

SPHINCS+ uses hash functions. The additional four algorithms still under consideration are designed for

general encryption and do not use structured lattices or hash functions in their approaches.

Dilithium is a component of the CRYSTALS (Cryptographic Suite for Algebraic Lattices) suite that was

submitted to NIST’s call for post-quantum cryptographic standards. It is a digital signature scheme that is

strongly secure under chosen message attacks based on the hardness of lattice problems over module

lattices. The security notion means that an adversary having access to a signing oracle cannot produce a

signature of a message whose signature he hasn't yet seen, nor produce a different signature of a

message that he already saw signed. For the same security levels, Dilithium has a public key that is 2.5X

smaller than the previously most efficient lattice-based schemes, while having essentially the same

signature size.

Reference:

 1] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler and D. Stehlé, "CRYSTALS-

Dilithium: A Lattice-Based Digital Signature Scheme," ACR Transactions on Cryptographic Hardware and

Embedded Systems, vol. 2018, no. 1, p. 238–268, 2018.

 2] G. Alagic, J. M. Alperin-Sheriff, D. C. Apon, D. A. Cooper, Q. H. Dang, C. A. Miller, D. Moody, R. C.

Peralta, R. A. Perlner, A. Y. Robinson, D. C. Smith-Tone and Y.-K. Liu, "Status Report on the First Round of

the NIST Post-Quantum Cryptography Standardization Process," NIST, 2019.

 3] Dilithium - CRYSTALS https://pq-crystals.org/dilithium/software.shtml

A possible authentication process could be performed by generating One-Time Pad (OTP) with a pseudo

random function. The nodes could be registered in the Blockchain, and each node determines the

nearest node that it is able to authenticate based on the relationship stored in the Blockchain nodes.

The request for authentication is sent from a node to the related node which observes and checks in the

Blockchain whether this node is related and would be able to authenticate it. This scheme is able to

thwart the attack of external malicious nodes or third-party attacks, even if the adversary knows the

first token.

3. If your Blockchain like solution requires a synchronous network environment then it is sensitive to

network latency. Network delays and packet loss may influence performance. Recommend using fifty

nanoseconds for a one data exchange from Node A to Node B.

Consider setting up a distributed, multi-simulation toolchain, for your Blockchain like solution analysis

and anomaly detection using Ku-band signal data reporting which would enable:

• Blockchain like solution prototype design with edge-fog-cloud platforms;

• Seamless integration with security microservices;

• Enable data analyzing services towards feature extraction from airborne data (Ku-band);

• A multi-functional user-friendly front-end GUI;

• Message queuing service for acknowledgment between front-end GUI and back-end service

• Kafka streaming service for real-time avionics digital data synchronization

• Data points to be recorded are

- nMessage: Numer of exchanged messages to achieve consensus

- nodeDelay: Processing delay at node level required for achieving consensus.

- nodeConsen: Number of participating nodes required to achieve consensus

- consenDelay: Network delay for the consensus protocol to achieve consensus

- consenPauseState: Probability that the consensus state is paused for a special case

- pauseStateTime: Time that the consensus system remains in the paused state

4. All data (voice, text, imagery and video) used by your Blockchain like solution should be transmitted

on a Ku-band as bytes or binary strings, no specific data types and formats are needed by

communication protocols. Your Blockchain like solution should operate in a bandwidth that satisfies the

common Ku-band communication standard (e.g., 548 Mbps upload and 1 Gbps download speeds).

For your consideration and possible use the following information is provided in answering the question:

Immutable datatypes are objects that cannot be modified or altered after they have been created (for

example, by adding new elements, removing elements, or replacing elements). Python's immutable data

types are:

• Int.

• Float.

• Tuple.

• Complex.

• String.

• Stringfrozen set [note: immutable version of the set]

• Bytes.

When you make changes to immutable objects, the memory where they were stored during

initialization is updated.

Quality of Service

• Frequency of information updates: the rate at which updated values are sent or received.

• Priority of data delivery: the priority used by the underlying transport to deliver the data.

• Reliability of data delivery: whether missed deliveries will be retried.

• Parameters for filtering by data receivers: to determine which data values are accepted and which are

rejected.

• Duration of data validity: the specification of an expiration time for data to avoid delivering “stale”

data.

• Depth of the ‘history’ included in updates: how many prior updates will be available at any time, e.g.,

‘only the most recent update,’ ‘the last n updates,’ or ‘all prior updates’

Quality of Information (QoI)

QoI Metric Trust In Metric Input

Pedigree Chain-of-custody Parent document metadata

Provenance Original sources Reputation of authors

Reputation Publisher Reputation of publisher

Correctness Accuracy of data SOA service opinion

Truth Validity of data Human vetting

Timeliness Freshness of data Expiration date/time

Data Integrity Data has not been modified Digital signatures/certificates

System Integrity Underlying system Configuration file

Disclosure Authorized dissemination Reputation of source

Relevance Receipt of necessary info Subscription metadata

Corroboration Supporting authors Reputation of authors

Compliance Structure of data Schema

5. The Bank Secrecy Act (the “BSA”) does NOT apply to this SBIR topic. The Financial Crimes

Enforcement Network (FinCEN) is NOT part of this SBIR topic.

6. For your consideration and possible use the following is provided in answering the question:

• PostgreSQL-based baseline system which should include: Network-level security (e.g. unauthorized

network connections); Transport-level security (e.g. Client certificate authentication); and Database-

level security (e.g. authorization or access controls).

• Pumba tool to simulate bandwidth degradation and disconnection between different parties on the

network. Alexi Ledenev, “Pumba: chaos testing tool for Docker (Github),” Pumba: chaos testing tool for

Docker (Github). https://github.com/alexei-led/pumba (accessed Jan. 06, 2021).

• The eXtensible Access Control Markup Language (XACML) is a standard that defines a fine grained

attribute-based access control policy language. There are open-source XACML evaluation engines

written in popular programming languages that you can leverage as opposed to creating our own

system.

• Automated Validation of Internet Security Protocols and Applications (AVISPA) tool. It is a security

protocol verification and analysis tool in which new security protocol has to be written in High Level

Protocol Specification Language (HLPSL) and then fed as input to the tool. AVISPA consists of four

different back-end compilers: On-the-fly Model-Checker (OFMC), Constraint-Logic-based Attack

Searcher (CL-AtSe) , SAT-based Model-Checker(SATMC) and Tree Automata based on Automatic

Approximations for the Analysis of Security Protocols (TA4SP).

• Java Native Interface (JNI) native language allowing interoperability between Java and C

• Python implementation framework - Python Multiparty Computation Implementation

• Multiparty Computation (MPC) protocol by Smart, Pastro, Damgård and Zakarias

• IPv6 for mobile devices such as drones because there is no need to go through a network address

table (NAT) and thus is low latency. IPv6 will be combined using blockchain with Proof of Stake

consensus

• Programming language: Python, JavaScript, and bash scripting.

• Development: OS (Ubuntu 20.04), Hardware (Desktop and Raspberry Pi).

• Tools: IDE (VS code), Container dev (Docker), Putty or other SSH tools.

• Bitmessage Plus - J. Warren. (2012). Bitmessage: A Peer-to-Peer Message Authentication and Delivery

System. [Online]. Available: https://bitmessage.org/bitmessage.pdf

• Do not use any blockchain that supports Turing-complete on-chain execution (e.g., Ethereum,

Hyperledger, and Tezos) because those blockchains cannot enforce semantic immutability.

